Nearly 100 plug-in cars and a stack of second-life EV batteries successfully responded to dozens of demand response calls.
The concept of using electric vehicles as a grid resource is no longer just theory. A pilot program recently conducted by BMW and Pacific Gas & Electric successfully demonstrated that electric vehicles can serve as reliable and flexible grid assets, which could eventually save money for both utilities and EV owners.
The BMW i ChargeForward Project is one of the best examples to date of a utility and an automaker working together to develop new technologies and use cases for electric vehicles (EVs) and their batteries.
“One of the things that we really wanted to test here was, how can we work closely with an automaker?”
said David Almeida, electric vehicle program manager at PG&E.
“We are an old company, and we’re a large company. Automakers are old companies, and they’re large companies. We both have our own internal bureaucracies. And so, one of the challenges I wanted to understand when we were setting this up was, how do we make those two independent entities work well together?”
“By and large, we didn’t have any of those institutional challenges that I was [worried about],” he said. “We ended up working very closely, I think partially because we’ve got this common shared goal of increasing electric transportation.”
With the i ChargeForward pilot, BMW was required to provide PG&E with 100 kilowatts of grid resources when called upon, through a combination of delaying charging for nearly 100 BMW i3 vehicles in the San Francisco Bay Area and drawing from a second-life stationary battery system built from reused EV batteries, for the duration of 1 hour. The grid services demonstrated in the pilot included day-ahead and real-time signals that were modeled after existing proxy demand resources from the California Independent System Operator (CAISO), in order to test whether these resources could eventually participate at the wholesale level.
Read more: Green Tech Media