How Solar Power Could Slay the Fossil Fuel Empire by 2030

In just 15 years, the world as we know it will have transformed forever. The ​age of oil, gas, coal and nuclear will be over. A new age of clean power and smarter cars will fundamentally, totally, and permanently disrupt the existing fossil fuel-dependent industrial infrastructure in a way that even the most starry-eyed proponents of ‘green energy’ could never have imagined.

These are not the airy-fairy hopes of a tree-hugging hippy living off the land in an eco-commune. It’s the startling verdict of ​Tony Seba, a lecturer in business entrepreneurship, disruption and clean energy at Stanford University and a serial Silicon Valley entrepreneur.

Seba began his career at Cisco Systems in 1993, where he predicted the internet-fueled mobile revolution at a time when most telecoms experts were warning of the impossibility of building an Internet the size of the US, let alone the world. Now he is predicting the “inevitable” disruption of the fossil fuel infrastructure.

Seba’s thesis, set out in more detail in his new book Clean Disruption of Energy and Transportation, is that by 2030 “the industrial age of energy and transportation will be over,” swept away by “exponentially improving technologies such as solar, electric vehicles, and self-driving cars.”

Tremors of change

Seba’s forecasts are being taken seriously by some of the world’s most powerful finance, energy, and technology institutions.

Last November, Seba was a keynote speaker at JP Morgan’s Annual Global Technology, Media, and Telecom Conference in Asia, held in Hong Kong, where he delivered a stunning presentation on what he calls the “clean disruption.”

Seba’s JP Morgan talk focused on the inevitable disruption in the internal combustion engine. By his forecast, between 2017 and 2018, a mass migration from gasoline or diesel cars will begin, rapidly picking up steam and culminating in a market entirely dominated by electric vehicles (EV) by 2030.

Not only will our cars be electric, Seba predicts, but rapid developments in self-driving technologies will mean that future EVs will also be autonomous. The game-change is happening because of revolutionary cost-reductions in information technology, and because EVs are 90 percent cheaper to fuel and maintain than gasoline cars.

The main obstacle to the mass-market availability of EVs is the battery cost, which is around $500 per kilowatt hour (kWh). But this is pitched to fall dramatically in the next decade. By 2017, it could reach $350 kWh—which is the battery price-point where an electric car becomes cost-competitive with its gasoline equivalent.

Seba estimates that by 2020, battery costs will fall to $200 kWh, and by 2024-25 to $100 kWh. At this point, the efficiency of a gasoline car would be irrelevant, as EVs would simply be far cheaper. By 2030, he predicts,

“gasoline cars will be the 21st century equivalent of horse carriages.”

It took only 13 years for societies to transition from complete reliance on horse-drawn carriages to roads teeming with primitive automobiles, Seba told his audience.

Lest one imagine Seba is dreaming, in its new quarterly report, the leading global investment firm Baron Funds concurs: “We believe that BMW will likely phase out internal combustion engines within 10 years.” (Investors at rival bank Morgan Stanley are making a similar bet, and are financing Tesla.)

Two days after his JP Morgan lecture, Seba was addressing the 2014 Global Leaders’ Forum in south Korea, sponsored by Korean government ministries for science and technology, where he elaborated on the prospects of an energy revolution. Within just 15 years, he said, solar and wind power will provide 100 percent of energy in competitive markets, with no need for government subsidies.

Over the last year Seba has even been invited to share his vision with oil and gas executives in the US and Europe.

“Essentially, I’m telling them you’re out of business in less than 15 years,”

Seba said.

Revolutionary economics of renewables

For Seba, there is a simple reason that the economics of solar and wind are superior to the extractive industries. Extraction economics is about decreasing returns. As reserves deplete and production shifts to more expensive unconventional sources, costs of extraction rise. Oil prices may have dropped dramatically due to the OPEC supply glut, but costs of production remain high. Since 2000, the oil industry’s investments have risen threefold by 180 percent, translating into a global oil supply increase of just 14 percent.

In contrast, the clean disruption is about increasing returns and decreasing costs. Seba, who dismisses biomass, biofuels and hydro-electric as uneconomical, points out that with every doubling of solar infrastructure, the production costs of solar photovoltaic (PV) panels fall by 22 percent.

Seba said:

“The higher the demand for solar PV, the lower the cost of solar for everyone, everywhere,”

“All this enables more growth in the solar marketplace, which, because of the solar learning curve, further pushes down costs.”

Read more: Motherboard.vice.com

Leave a Reply